首页> 外文OA文献 >Performance Guarantees for Schatten-$p$ Quasi-Norm Minimization in Recovery of Low-Rank Matrices
【2h】

Performance Guarantees for Schatten-$p$ Quasi-Norm Minimization in Recovery of Low-Rank Matrices

机译:schatten- $ p $ Quasi-Norm最小化的性能保证   低秩矩阵的恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We address some theoretical guarantees for Schatten-$p$ quasi-normminimization ($p \in (0,1]$) in recovering low-rank matrices from compressedlinear measurements. Firstly, using null space properties of the measurementoperator, we provide a sufficient condition for exact recovery of low-rankmatrices. This condition guarantees unique recovery of matrices of ranks equalor larger than what is guaranteed by nuclear norm minimization. Secondly, thissufficient condition leads to a theorem proving that all restricted isometryproperty (RIP) based sufficient conditions for $\ell_p$ quasi-norm minimizationgeneralize to Schatten-$p$ quasi-norm minimization. Based on this theorem, weprovide a few RIP-based recovery conditions.
机译:在从压缩线性测量中恢复低秩矩阵时,我们为Schatten- $ p $准规范化($ p \ in(0,1] $)提供了一些理论保证。首先,利用Measurementoperator的零空间属性,我们提供了足够的空间精确恢复低秩矩阵的条件。该条件保证秩的矩阵的唯一恢复等于或大于核规范最小化所保证的矩阵。其次,该充分条件导致一个定理,证明所有基于受限等距性质(RIP)的充分条件对于\ ell_p $准范数最小化广义化为Schatten- $ p $准范数最小化基于此定理,我们提供了一些基于RIP的恢复条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号